BLOCH-TYPE SPACES AND THEIR COMPOSITION OPERATORS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Composition Operators on Bloch Type Spaces

In this paper we characterize continuity and compactness of composition operators Cφ mapping the α-Bloch space into the μ-Bloch space, where μ is a weight defined on the unit disk D, in term of certain expression that involve the n-power of the symbol φ.

متن کامل

Composition Operators from Nevanlinna Type Spaces to Bloch Type Spaces

Let X and Y be complete metric spaces of analytic functions over the unit disk in the complex plane. A linear operator T : X → Y is a bounded operator with respect to metric balls if T takes every metric ball in X into a metric ball in Y . We also say that T is metrically compact if it takes every metric ball in X into a relatively compact subset in Y . In this paper we will consider these prop...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized composition operators from logarithmic Bloch type spaces to Q_K type spaces

In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.

متن کامل

Weighted composition operators from Bergman-type spaces into Bloch spaces

Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2015

ISSN: 1225-293X

DOI: 10.5831/hmj.2015.37.4.387